An Efficient Schulz-type Method to Compute the Moore-Penrose Inverse

نویسندگان

  • H. Esmaeili Department of Mathematics, Bu-Ali Sina University, Hamedan, ‎Iran‎.
  • M. Rashidi Department of Mathematics, Bu-Ali Sina University, Hamedan, ‎Iran.
  • R. Erfanifar Department of Mathematics, Malayer University, ‎Malayer‎, ‎Iran.‎‎
چکیده مقاله:

A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An accelerated iterative method for computing weighted Moore-Penrose inverse

The goal of this paper is to present an accelerated iterative method for computing weighted Moore–Penrose inverse. Analysis of convergence is included to show that the proposed scheme has sixth-order convergence. Using a proper initial matrix, a sequence of iterates will be produced, which is convergent to the weighted Moore–Penrose inverse. Numerical experiments are reported to show the effici...

متن کامل

When Does the Moore–penrose Inverse Flip?

In this paper, we give necessary and sufficient conditions for the matrix [ a 0 b d ] , over a *-regular ring, to have a Moore-Penrose inverse of four different types, corresponding to the four cases where the zero element can stand. In particular, we study the case where the MoorePenrose inverse of the matrix flips. Mathematics subject classification (2010): 15A09, 16E50, 16W10.

متن کامل

Minors of the Moore - Penrose Inverse ∗

Let Qk,n = {α = (α1, · · · , αk) : 1 ≤ α1 < · · · < αk ≤ n} denote the strictly increasing sequences of k elements from 1, . . . , n. For α, β ∈ Qk,n we denote by A[α, β] the submatrix of A with rows indexed by α, columns by β. The submatrix obtained by deleting the α-rows and β-columns is denoted by A[α′, β′]. For nonsingular A ∈ IRn×n, the Jacobi identity relates the minors of the inverse A−1...

متن کامل

Symbolic computation of weighted Moore-Penrose inverse using partitioning method

We propose a method and algorithm for computing the weighted MoorePenrose inverse of one-variable rational matrices. Continuing this idea, we develop an algorithm for computing the weighted Moore-Penrose inverse of one-variable polynomial matrix. These methods and algorithms are generalizations of the method or computing the weighted Moore-Penrose inverse for constant matrices, originated in [2...

متن کامل

Effective partitioning method for computing weighted Moore-Penrose inverse

We introduce a method and algorithm for computing the weighted MoorePenrose inverse of multiple-variable polynomial matrix and the related algorithm which is appropriated for sparse polynomial matrices. These methods and algorithms are generalizations of algorithms developed in [24] to multiple variable rational and polynomial matrices and improvements of these algorithms on sparse matrices. Al...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره 2

صفحات  221- 228

تاریخ انتشار 2018-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023